skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Song, Mengting"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background: Widespread dementia detection could increase clinical trial candidates and enable appropriate interventions. Since the Clock Drawing Test (CDT) can be potentially used for diagnosing dementia-related disorders, it can be leveraged to develop a computer-aided screening tool. Objective: To evaluate if a machine learning model that uses images from the CDT can predict mild cognitive impairment or dementia. Methods: Images of an analog clock drawn by 3,263 cognitively intact and 160 impaired subjects were collected during in-person dementia evaluations by the Framingham Heart Study. We processed the CDT images, participant’s age, and education level using a deep learning algorithm to predict dementia status. Results: When only the CDT images were used, the deep learning model predicted dementia status with an area under the receiver operating characteristic curve (AUC) of 81.3% ± 4.3%. A composite logistic regression model using age, level of education, and the predictions from the CDT-only model, yielded an average AUC and average F1 score of 91.9% ±1.1% and 94.6% ±0.4%, respectively. Conclusion: Our modeling framework establishes a proof-of-principle that deep learning can be applied on images derived from the CDT to predict dementia status. When fully validated, this approach can offer a cost-effective and easily deployable mechanism for detecting cognitive impairment. 
    more » « less
  2. Abstract IntroductionAutomated computational assessment of neuropsychological tests would enable widespread, cost‐effective screening for dementia. MethodsA novel natural language processing approach is developed and validated to identify different stages of dementia based on automated transcription of digital voice recordings of subjects’ neuropsychological tests conducted by the Framingham Heart Study (n= 1084). Transcribed sentences from the test were encoded into quantitative data and several models were trained and tested using these data and the participants’ demographic characteristics. ResultsAverage area under the curve (AUC) on the held‐out test data reached 92.6%, 88.0%, and 74.4% for differentiating Normal cognition from Dementia, Normal or Mild Cognitive Impairment (MCI) from Dementia, and Normal from MCI, respectively. DiscussionThe proposed approach offers a fully automated identification of MCI and dementia based on a recorded neuropsychological test, providing an opportunity to develop a remote screening tool that could be adapted easily to any language. 
    more » « less